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Abstrac t  

The absorption of X-rays scattered by isotropic random 
multiphase materials is shown theoretically to depend not 
only on volume fraction, linear absorption coefficient and 
mean particle size of each phase but also on the shape of 
the scattering particles. The absorption effect is remarkably 
enhanced with increasing polydispersity and irregularity of 
the scattering phase. 

In the present note we consider the absorption of X-rays 
in heterogeneous materials and its dependence on the shape 
of the scattering particles. The specimen is supposed to be 
planar and to consist of n crystalline phases. The particles 
of each phase i ( i = l , . . . , n )  should be randomly dis- 
tributed. The intensity I, of the X-ray beam scattered by 
phase i is mainly determined by the volume fraction c, of 
the scattering particles. However, interaction processes such 
as the generation of photoelectrons by the X-rays attenuate 
the intensity of the beam. In a homogeneous single-phase 
material, this attenuation is described by the linear absorp- 
tion coefficient/x~ of the corresponding phase. The situation 
is more complicated in heterogeneous materials. In general, 
the beam penetrates not only the scattering phase i but also 
regions filled with particles of the other phases. If all parti- 
cles are very small compared with the penetration depth of 
the X-rays, the beam will pass through many regions of all 
phases. Then the path length through particles of the scatter- 
ing phase is given by the geometrical path length of the 
beam in the whole sample multiplied by the volume fraction 

of the scattering particles. Considering a series of samples 
of the same composition but with increasing particle size, 
the length of the path of the beam through the scattering 
phase exceeds the above-mentioned value more and more, 
and in the limit of very large particles the whole path of 
the beam through the sample is within a single scattering 
particle at the surface of the sample. With the supposition 
that the linear absorption coefficients /z~, i = 1 , . . . ,  n, are 
different, it is obvious that the strength of the absorption 
effect varies with the size of scattering particles (Brindley, 
1945; Suortti, 1972). The present calculation will show that 
the absorption effect depends also on the shape of scattering 
particles. 

The intensity I~ of a symmetrically diffracted beam is 

I,/Io., = j" exp [-/x,x,-/x(,)x(,)] dV/Qo.  (1) 
v 

The scattering phase is denoted by i, x~ is the path length 
of a ray through particles of phase i and x(~) is the path 
length through the regions of the (planar) sample that do 
not belong to phase i./z~ is the linear absorption coefficient 
of phase i and 

/x(i) = ( l  - c,) -I  ~, cjtxj (2) 

describes the mean value of the absorption coefficient for 
all regions of the sample outside phase i. lo, i/2tz~ is the 
intensity of an / - type  single-phase reference specimen (c~ = 
1) obtained under the same experimental conditions as the 
scattering intensity I~ of the multiphase sample (external 
standard method). Q0 is the cross-section area of the 
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incident beam, V is the volume of the sample and ci the 
volume fraction of phase i. Multiple scattering is neglected 
in (1). For homogeneous materials (ix = / ~ ,  ct -- 1), 

I / Io  = 1/2/~ (3) 

is valid. 
The absorption in heterogeneous multiphase substances 

may be described by an effective absorption coefficient ~ 
that is valid for a beam scattered from particles of phase i. 

I,/Io. , = 1/2~',. (4) 

Characterizing the size of/- type particles by the mean chord 
length ~, one can solve (1) exactly for the following limiting 
cases. 

(i) Very small particles (/~,.~ ,~0.1): 

I,/Io,, = 1/2/2, /2 = Z  Ckl~k. (5) 
k 

(ii) Very large particles (/z,~ ~, 1): 

I,/Io., = 1/2/x,. (6) 

The deviation of the absorption effect from these limiting 
cases is called 'microabsorption'. Brindley (1945) pointed 
out that besides the size of scattering particles the absorp- 
tion contrast ( tz , - /2)  should play a decisive role. Suortti 
(1972) investigated porous single-phase substances and 
proved experimentally the effective linear absorption 
coefficient Iz' to be a function of mean chord length I and 
volume fraction c. He also gave evidence for the influence 
of the surface roughness of the samples on/z ' .  

Here we start with a stochastic germ-grain model and 
use it to describe the bulk structure of the scattering regions 
(phase i). The model is constructed in two steps. In the 
first step a random (Poisson) point field is generated and 
in the second one grains are placed on each germ whereby 
the grains may overlap. For details see Stoyan, Kendall & 
Mecke (1987). In recent papers we applied this model to 
solve (1) using Poisson polyhedra as grains for porous 
(Hermann & Ermrich, 1987) and multiphase (Hermann & 
Ermrich, 1989a, b) materials. In the latter case we obtained 
for c, ,~ 1, /x,~ .~ 1 the expression 

it', =/2/[1 - 2(1 - c,)(tt, - / 2 )  ~]. (7) 

Now we consider equally sized spheres as primary grains 
which represent a good contrast to a set of randomly shaped 
Poisson polyhedra. [The random polyhedra are produced 
by means of a tessellation of the space by random planes. 
The mean value b of the breadth or the mean chord length 
/- characterizes the particle size. For a Boolean structure 
composed by Poisson polyhedra we have ~ = bJ(1  - c , )  in 
the limit of low volume fraction c~ ,~ 1, and l, = 4r,/3(1 - c,) 
for spheres with radius r~ as grains (Stoyan et al., 1987).] 

As was shown by Hermann & Ermrich (1989a), the mean 
value L, of the path x, through phase i for fixed scattering 
angle 0 and depth of the scattering region parallel to the 

surface can be used to evaluate (1): 

L/2  

L , = 2  I C , ( r ) / c i  dr. (8) 
0 

L is the geometrical length of the beam through the sample 
and C,(r )  is the probability of finding two arbitrary points 
with distance r both lying in an / - type  region. For spheres, 
the correlation function is (Stoyan et al., 1987) 

f 2ci - 1 + (1 - G) 

C , ( r ) = ~  x e x p { - [ l n ( 1 - c i ) ] [ r a / 1 6 r  3-3r /4r i ]} ,  r<-2ri 

C2i, r > 2ri 

(9) 

and the corresponding expression for Poisson polyhedra is 

C,,(r) = p,2+p,(1 - p , )  exp ( - r / b , ) .  (10) 

The correlation functions (9), (10) are used to calculate the 
mean values L, of the path x~ of the beam through phase 
i by means of (8). Then (1) is evaluated replacing x, by L, 
and x(,) by L - L ~ .  For c , ,~l  and Itz~-/21/~,~ 1, the result 
is easy to calculate and we obtain 

I,/Io. , = (c,/2/2)[ 1 - k ( 1 -  c,)(~, - /2 )  ~] (11) 

with 

k={92/8 for spheres 
for Poisson polyhedra. 

Expression (11) shows that the intensity of an X-ray 
beam reflected symmetrically by a planar sample does not 
only depend on the absorption contrast ( /x , - /2)  and the 
mean chord length ~ but also on the shape of the scattering 
particles. Because of the restriction c, ,~ 1, within the ran- 
dom set produced by the Boolean model only few overlaps 
of grains appear. Therefore, the shape of the scattering 
regions of the present structure model is similar to that of 
the grains used for the construction of the random set, and 
we may conclude from (11) that the absorption caused by 
a random arrangement is remarkably enhanced with 
increasing polydispersity and irregularity of the particles. 

The present results can be used to carry out a refined 
absorption correction of scattering data which is of interest 
in quantitative phase analysis. 
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